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For many years the theory of titration curves of impenetrable proteins has been based on a model which represents the 
protein molecule as a sphere with a continuous and uniform distribution of charge on its surface. In this paper this model is 
replaced by a more realistic one in which the charges are taken to be discrete unit charges located at fixed positions. General 
equations are obtained which express the titration curve as a function of the locations of ionizable sites and of their intrinsic 
properties. It is concluded that the intrinsic properties may themselves be quite sensitive to the location of the dissociable 
site with respect to the surface of the protein molecule. 

Introduction 
Hydrogen ion titration curves of proteins can be 

obtained experimentally with considerable accu­
racy. Their most prominent feature is a strong 
electrostatic interaction which results in the fact 
that the titration curve of a protein containing 
acidic and basic side chains in any given propor­
tions is considerably natter than the titration curve 
of a mixture of corresponding simple acids and bases 
in the same proportions. 

To account theoretically for this effect2-6 it has 
been customary to represent a protein molecule by a 
sphere impenetrable to solvent; to assume all ti-
tratable groups independent, except for electro­
static interaction; to consider all of the titratable 
groups of a given kind (e.g., all phenolic groups) to 
be intrinsically identical; and to allow the titratable 
groups to occupy, with equal probability, any posi­
tion on the surface of the spherical molecule. In 
addition, the mixture of protein ions, with various 
integral values of Z, which are ordinarily present in 
any protein solution, has in the customary treat -
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ment been replaced by a single kind of ion with con­
tinuously variable charge, Z. 

With these assumptions one obtains the result 
that the titration curve of a protein is a superposi­
tion of the curves for the individual types of groups: 
the fraction a of dissociated groups of any type be­
ing given by the relation 

1 dW 
pH - log 1 - = PKu 

2.303Ar SZ HS (D 

where Kint is an intrinsic dissociation constant 
characteristic of the type of group and W is the work 
done in placing all of the protein charges onto the 
molecule. Since all of the groups are considered 
smeared evenly over the surface, positive and nega­
tive charges occupy the same_space and thus cancel: 
only the average net charge Z remains. In terms of 
Z 

2D \b 1 + KaJ (2) 

where b is the radius of the sphere, a is the radial 
distance to which salt ions are excluded (i.e., a — b 
is of the dimensions of a salt ion radius), K is the De-
bye-Hiickel parameter proportional to the square 
root of the ionic strength, e the protonic charge and 
D the dielectric constant of the solvent. 

With this value of W, equation 1 becomes 

pB. - log: = pKint - 0.868wZ 

where w 

2DkT \b 1 + na) 

(3) 

(4) 
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The assumptions inherent in this treatment are 
clearly invalid. Especially is this true of the as­
sumption that the titratable groups may be consid­
ered equally likely to lie anywhere on the molecular 
surface. The acidic and basic groups of protein 
molecules lie on side chains known to be arranged 
in a definite order. Furthermore, protein molecules 
are believed to be tightly coiled in a specific way, so 
that the acidic and basic groups must occupy defi­
nite fixed positions, not necessarily at the surface, 
and certainly not evenly distributed. 

Accordingly we shall present in this paper a more 
realistic theory in which the titratable groups are 
assigned specific fixed locations on the protein mole­
cule. This will markedly alter the expression for W 
(equation 2) and will also affect the term log a/ 
(1 — a) in equations 1 and 3, which occurs there as 
the result of the random positioning of titratable 
groups, which places all of them at an equal elec­
trostatic potential and thus equally accessible to 
protons. The new theoretical treatment will also 
show when similar groups can be considered in­
trinsically identical. 

For the present we shall continue to assume that 
coulombic interaction between their charges is the 
only type of interaction between the groups. Ob­
viously, the present treatment will not apply where 
there is appreciable hydrogen bonding between side 
chain groups.6 The spherical shape of the protein 
molecule is also maintained, so that the treatment 
will not apply to markedly asymmetric proteins 
such as myosin. However, the assumption of 
spherical shape should not be a serious one for the 
common globular proteins even if they deviate 
somewhat from spherical shape, for electrostatic 
interaction will depend primarily on the distance 
between charges and how far within the molecule 
(i.e., within a region of low dielectric constant) they 
are placed. 

We maintain also the impenetrability of the 
molecule to solvent. It is probable that this as­
sumption is actually valid for many globular pro­
teins. Any water trapped within such proteins is 
probably tightly held and probably contains none 
of the salt ions present in the solvent. In a previ­
ous paper7 the effect of solvent penetration has 
been discussed on the basis of the smeared site 
model. If solvent penetration occurs this model is 
actually not as unrealistic a one as for impenetrable 
proteins, for it is likely that penetrable proteins are 
less rigidly coiled than impenetrable ones, and that 
the side chains are free to assume numerous differ­
ent positions with equal probability. In the case 
of serum albumin, which is the only protein for 
which expanded, penetrable configurations have 
been established, the greater flexibility of the side 
chains is indicated by the increased rate of depolari­
zation of the fluorescence of attached dye mole­
cules.8 

It should be mentioned, finally, that the present 
treatment will not take into account the interaction 
between protein molecules, i.e., it applies only to 

(G) M . Laskowsk i a n d H . A. Scheraga , T H I S J O U R N A L , 76 , 6305 
(1954). 

(7) C. Tan fo rd , J. Phys. Chem., «9, 788 (1955). 
(8) G. W e b e r , Biockem. J., 6 1 , 155 (1952) ; W. F . H a r r i n g t o n , P . 

J o h n s o n a n d R. H . Ot tewi l l , ibid., 62, 569 (1956). 

titration curves extrapolated to zero protein con­
centration. At relatively high ionic strength (0.01 
or above), however, titration curves as ordinarily 
performed (at concentrations of 1% or less) are ex­
perimentally independent of the concentration. 

The Work of Charging 
The model of a protein molecule used in this 

study is shown in Fig. 1. The positions of m titrat­
able groups are indicated by points. There is inter­
action between only those points which bear a 
charge. If they bear charges, these will be point 
charges embedded in a spherical cavity of dielectric 
constant D1. The external dielectric constant is D. 
Actual charges, of course, are not point charges 
and their self-energy, as calculated by this model, 
will be erroneous. The self-energy terms, how­
ever, will not appear in the final expressions to be 
derived. Interaction between charges, provided 
they do not overlap, is independent of whether they 
are concentrated at a point or spread over a 
spherical surface of atomic dimensions. 

It should be noted that each titratable group of a 
protein molecule bears a unit charge either in its 
acidic or in its basic form, but never in both forms. 
Thus the charge at each of the m points of Fig. 1 is 
£te where | t may be zero or + 1 for basic groups and 
zero or — 1 for acidic groups. 

The work of charging such a sphere has been 
evaluated by Kirkwood.9 

With the energy zero for completely discharged 
protein 

2 m m 
w -k'L E &&Wu - -^) -

^0 k - 1 / - 1 
2 m m 

s - E E teiCn (5) 
M k - 1 1 - 1 

where 
Aki = 6/Dirkl (6) 

_ 1 ^ (w + I)(D - Dj) n p . . . n , 

r _ I )_*_ , v 2n+l T R Tv 
Ckl 2? J 1 + * "̂  ^ 1 2 » — l |_(»+ DD + nD,J X 

X2 a - k l "Pn(cOS eM) J 

Kn+IJx) n(D - DO / f e y + ' * ' \ (S) 
Kn-^x) ~*~ (n + I)D + nDi \a) 4ns - l ) 

where 
x = Ka (9) 

Pki = nn/b' (10) 
o-ki = nn/a' (11) 

K(X)-T 2 ' nl(-2n ~ *>' , . n2) 
K"(X> ~ sty! (2n)l (n - *)!* J ) 

iJ„(cos 0ki) represents ordinary Legendre polyno­
mials and r\c, n, ru, and 0ki are identified by Fig. I.10 

The following physical significance may be as­
signed to the various terms of equation 5: the 

(9) J. G. K i r k w o o d , J. Chem. Phys., 2 , 351 (1934). 
(10) I n dea l ing wi th a single pa i r of charges , K i r k w o o d a n d West-

heimer , J. Chem. Phys., 6, 506 (1938), found it conven ien t to express W 
in t e r m s of a n effective dielectric constant, DE- I n the i r no ta t ion (no 
salt p resen t ) 1/DE would be equ iva len t t o our (rkl/&) (<4kt — Bkl) . 
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factor involving the Aa represents the work of 
charging in an unbounded medium of dielectric 
constant Dc, the factor involving the Bu repre­
sents the modification arising from the fact that the 
protein molecule is a bounded cavity within a me­
dium of higher dielectric constant D; the factor in­
volving the Cki represents the interaction with the 
salt ions of the solvent and vanishes at zero salt 
concentration, when x •= m = 0. 

In the factors containing An and 2?ki the terms 
with k — I {i.e., Akk and Bkk) are self-energy 
terms, while those with k ^ I represent pair-wise 
interaction between the sites. In the ionic strength-
dependent factor the terms with k = I represent 
the excess chemical potential of individual charges 
due to their interaction with salt ions; terms with 
k T± I represent the effect of the salt ions on the 
pair-wise interactions. A]^ and, when pkk = 1. 
also .Bkk, a r e infinite because of the assumption that 
all charges are assumed concentrated at a point. 

It will be found convenient to separate the infi­
nite self-energy terms from the rest and to write 

s m 
W - 5A E ftWkfc - Ba) + W (13) 

^ 0 A = I 

i m 

W = ^ S E &&Ww - Ai ) -
• tn t?t_ 

K- E E fcfcCw (14) 
^°fc = l l-l 

Since 

fki = b [pk, ( ^ + JJ - 2 cos &,) ] ' A (15) 

An may be rewritten as 
Aw 1/P1 [pki ( ^ + ^ - 2 c o s ei") J * (16) 

In many instances, sites k and 1 will be located 
the same distance r± from the center: under these 
conditions Aa becomes 

Au = 1/A[2pk[(l - cos Bkl)]Vi (17) 
Since Di « D it is possible to expand the ex­

pression BH in increasing powers of 5 = DJD, re­
taining only terms up to <52. One may also use the 
following relation involving Legendre polynomi­
als11 

Y pti"-P„(cos ekl) = 1/(1 - 2Pk, cos Su + PkI2)1/= (18) 
K = O 

and by integration with respect to pki 

™ l 

n = 0 n + 1 

J_ j l~(l - 2pki cos 9ki + Pk1 ')'/' + Pki - cos gkl~l 
PkI L 1 — COS 0kl J 

(19) 
w h e n c e 
„ 1 - 23 + 23» 
a k l A d - 2 P k l cos Ski + Pki3)'/. ^ 
S - 38» l n r ( l - 2pkicos flki + P8ki)'A + Pki - cos AMI , 
Apki L 1 - cos 9ki J 

SJ V> pki"P»(cos 9ki) , o m 

(11) E.g., J. A. Stratton, "Electromagnetic Theory," McGraw-Hill 
Book Co., New York, N. Y. 

The series occurring in equation 20 converges rap­
idly, SO that both AM and .Bki are readily com­
puted. 

Fig. 1.—Model of protein molecule. The points k and 
/ represent the sites of two of the titratable groups. The 
dielectric constant is Di within the radius b, and D outside 
it. Salt ions in the solvent cannot penetrate within the 
radius a. 

When a pair of charges is located at the same dis­
tance Tk from the center, Aki — Bki depends only on 
pki, 0ki a n d S. Table I shows calculations applica­
ble to this condition. The values apply to aqueous 
solutions at 25° since Di has been placed equal to 
78.5 5. At any other temperature (or for another 
solvent), with dielectric constant D, the values 
must be multiplied by (78.5/Z)). For interpolation 
it is convenient to plot l/(Aki — Bki) versus cos 0ki, 
a plot which shows relatively little curvature. 

Where all charges are not located the same dis­
tance from the center the sum Aa- -Bki must be 
corrected by the difference in 4̂ki between equa­
tions 16 and 17. 

It will be noted from Table I that Au — Ba and, 
hence, the work of charging, is markedly sensitive to 
Pki, and when pki < 1, markedly sensitive to the 
choice of 8 (i.e., Di). 

It is not possible to effect much simplification to 
equation 8 for Cki. I t should be noted, however, 
that the term #/ (14- x)D is the most important one 

m m 
at low ionic strength. Since Y E &li = ^2, this 

A = I i = I 
means that, at very low ionic strength, the contri­
bution of this term to W becomes -Z2C2Kd/2Da (1 + 
Ka). This is identical with the ionic-strength de­
pendent term of equation 2, i.e., at very low ionic 
strength the ionic strength effect is the same as for 
the smeared charge model. 

Figure 2 shows a plot of Cki (with D = 78.5) ver­
sus x, for values of x up to 1.0. Calculations for 
x > 1.0 are laborious and have not been made for 
the present. (A value of x = Ka = 1.0 corresponds, 
for the smallest proteins, to an ionic strength of about 
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X = KO. 

Fig. 2.—Cki as a function of ionic strength in water at 
25°. The solid lines are labeled to indicate the values of 
cos 0ki to which they apply. The dotted line represents 
the function, x/D(l + x). 

0.04.) The calculations are based on 8 = 0.0025, bja 
= 0.85 and pki = 1. The result is quite insensitive 
to the values of 5 and b/a, and depends only slightly 
on pki (note that a^{ = p][{ b/a). The dependence 
is in such direction as to bring Cu even closer to x/ 
(1 + x)D when PH < 1. 

One may conclude from Fig. 2 that, where there 
is a more or less uniform distribution of the values 
of cos 0ki over the possible range, the substitution of 
x/(I + x)D for Cki is a good approximation up to 
x ~ 0.5 with charges near the surface, and to even 
higher values of x for charges appreciably below the 
surface. 

It should be noted further that, as the ionic 
strength increases to high values, the major con­
tribution to the ionic strength-dependent term will 

VALUES 

Vs = 

h 

1 

0.9 

0 .8 

0.5 

OF <4kl — 

COS 9«1 

- 1 
- 0 . 5 

0 
4-0.5 
+0.9 

- 1 
- 0 . 5 

0 
+0.5 
+0.9 

- 1 
- 0 . 5 

0 
+0.5 
+0.9 

- 1 
- 0 . 5 

0 
+0.5 
+0.9 

TABLE I 

Bki IN WATER 

3 = 0.025 

(Di =* 2) 

0.0040 
.0050 
.0069 
.0116 
.0351 

0.0064 
.0084 
.0126 
.0258 
.1580 

0.0135 
.0189 
.0307 
.0710 
.4519 

0.1109 
.1539 
.2383 
.4683 

1.6450 

AT 2 5 ° , FOR 
-Aa — Bti 

I = 0.050 

(DiC* 4) 

0.0041 
.0051 
.0070 
.0116 
.0349 

0.0057 
.0073 
.0105 
.0197 
.0972 

0.0097 
.0131 
.0201 
.0429 
.2416 

0.0600 
.0821 
.1252 
.2415 
.8314 

fk = n 

s = 
0.125 
(Di=* 

10) 
0.0043 

.0054 

.0072 

.0118 

.0342 

0.0054 
.0068 
.0094 
.0161 
.0598 

0.0076 
.0098 
.0140 
.0261 
.1148 

0.0296 
.0392 
.0574 
.1054 
.3432 

come from terms with cos Ski close to unity. In 
most instances only the self-energy terms (cos 0ki = 
1) will have cos 0y close to unity, i.e., at high ionic 
strength the effect of ionic strength becomes largely 
that caused by the excess chemical potential of the 
individual charges. 

The Hypothetical Discharged State.—In the 
following discussion we shall have occasion to refer 
to an hypothetical discharged state of any protein 
molecule having positive and negative charges at 
specified locations. This state is defined such 
that all bond energies remain the same, all protons 
remain attached to their original positions. Only 
the electrostatic charges are removed.12 Going 
from the actual state of the protein molecule to 
the hypothetical discharged state at the same ionic 
strength clearly involves an amount of work equal 
to W as given in equation 13. 

Intrinsic Free Energies 
In the following section we shall compute the 

free energy change resulting from the addition of 
protons to basic sites of a protein molecule. Part 
of this free energy will clearly be electrostatic and 
related to W of the preceding section. Another 
part, however, must be a chemical free energy 
change closely related to the free energy change of 
similar reactions in model compounds, i.e., reac­
tions such as R-NH2 + H+ -*• R-NH 3

+ ; R-COO-
-f- H + - * R-COOH; where R represents a group of 
atoms approximating as closely as possible the 
immediate vicinity of the corresponding group on 
the protein molecule. 

Accordingly we define for each site on the protein 
an intrinsic standard free energy change, (AF°int)kas 
the standard free energy change at zero ionic 
strength for the reaction: basic form of kth site at­
tached to a protein molecule with all other sites dis­
charged + H + - * acid form of the kth site attached 
to a protein molecule with all other sites discharged. 
Thus the reaction for cationic sites is 

P'N + H-* P'NHH (D 
where P ' represents the otherwise discharged pro­
tein molecule, while for anionic sites 

P '0 - + H+—> P'OH (II) 

The standard states for the protein species in these 
reactions are the usual "hypothetical ideal one mo-
lal" states. That for H + is the state of unit activ­
ity as defined by the pYL measurement. Since all 
other sites are discharged, and since our model al­
lows none but coulombic interaction, (AF°int)k must 
be independent of whether other sites are in their 
acidic or basic form. 

The definition of (AF°int)k here given has been 
chosen because it can be expected to approximate 
most closely the standard free energy changes in 
model compounds. It should be noted that the 
change in charge type on proton addition is different 
in model cationic and anionic compounds, and that 

(12) If the present treatment were not confined to infinite dilution of 
the protein solute we should have to worry at this stage about counter-
ions which wuuld have to be discharged along with the protein unless 
the net charges were zero. An infinite dilution these counter-ions are 
infinitely dispensed and spend only an infinitesimal fraction of the 
time in the vicinity of the protein molecule. 
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this difference is preserved in the definition of 
(A^teOk. 

We next define a quantity AFg as the difference 
between the free energy of a protein molecule hav­
ing a proton on site k, in its hypothetical, com­
pletely discharged form, and a similarly discharged 
molecule not having a proton on site k, i.e., in 
terms of reactions I or II, AF£ = F(P'NH) -
F(P 'N) or AF£ = F(P 'OH) - F(P 'O). We can 
express (AF°jnt)k in terms of AFg by discharging the 
protein on the right side of reaction I or that on the 
left side of reaction II. Using equation 13 and re­
calling that reactions I and II occur at zero ionic 
strength we get, for a cationic site 

(AF»iot)k = AFt + 7£ (Au - Bkk) - ^ H + (21) 

and for an anionic site 

(AF°int)k = AFk* - ~ (Ak - Bkk) - M°H* (22) 

where ^0H + is the standard chemical potential of an 
hydrogen ion, which is part of (AF°iI1t)k but not part 
oiAFl. 

Since our model takes into account no interac­
tion other than coulombic interaction between 
charged sites, and between charged sites and ex­
ternal salt ions, we can conclude that AF£ must 
have identically the same value for all sites of a 
particular chemical kind. AFg must also be in­
dependent of ionic strength.13 

It is apparent from equation 21 and 22 that, al­
though AFf is the same for all sites of the same 
chemical kind, (AF°int)k is not necessarily the same 
for all such sites. The term A^k is the same, but 
-Bkk as given by equation 7 or 20, with cos 0ki = 1 
clearly depends on the depth of the site within the 
molecule, as given by pkk-14 

In all of the calculations based on the present pa­
per we shall place all sites of the same kind at the 
same distance from the center of the sphere. In 
that event (AF°mt)k will be the same for all sites of 
the same kind. If we suppose that of the m sites on 
the molecule ntj (j = 1, 2, . . .) are of a particular 
kind (e.g., phenolic groups), then each of these ntj 
sites will have the same value of (AF°iut)k, which we 
shall call (AF°int)j. 

Model compounds are generally characterized by 
their acid dissociation constants. Since (AF°mt)i 
refers to the corresponding association reaction, we 
define an intrinsic dissociation constant (i^int)j for 
the jth kind of group by the relation 

(AFOmt): = -2.303fer(^ l n t)j (23) 

(13) The principal non-coulombic factor likely to occur in proteins, 
which might in fact produce differences in AF* between different 
sites of the same kind, is hydrogen bonding; cf. ref. 6. 

(14) It is possible by varying pkk to change Bkk by as much as 
10,000 to 100,000 calories per mole of reaction. This would correspond 
to a change in intrinsic pK of from 7 to 70! It is, of course, an over­
simplification to consider reaction II as the disappearance of a pair 
of discrete charges. Instead, the reaction should be considered as the 
formation of an "O-H "*" dipole. However, the work released in 
forming such a dipole also depends critically on the depth below the 
surface. The fact that intrinsic pK values of ionizable groups on pro­
tein molecules normally correspond closely to those to be expected 
from model compounds suggests that these groups in proteins are 
located at the same depth below the cavity surface as in model com­
pounds. 

Total Free Energy 
A protein molecule can occur in numerous forms, 

depending on how many protons are bound to it, 
and on where they are. The titration curve is a 
measure of the equilibrium between these forms as a 
function of pH, and we therefore need to know the 
relative total free energy of the various forms. 

The symbol P will be used to represent a protein 
molecule from which all dissociable protons have 
been removed. It will bear a net negative charge 
equal to the number of anionic sites. Similarly 
PHm represents a molecule with no dissociated pro­
tons, bearing a net positive charge equal to the 
number of cationic sites. Both P and PH m repre­
sent unique forms with unique configurations. 

In general, PHv will be used to represent a mole­
cule containing v dissociable protons. These v pro­
tons may be attached to different kinds of sites; 
we shall use v\ as the number of protons on a given 
kind of site, and shall distinguish between various 
species PH„(i) (i = 1, 2 , . . .) which differ in the vari­
ous Vj, but which have the same value of v = 2PJ.16 

It must further be recognized that each form 
PH„® can exist in a large number Qv® of possible 
configurations, arising from the fact that each set of 
Vj protons may be distributed over nij sites of the 
same kind. Q„w is given by the relation 

J 

To calculate the titration curve at any ionic 
strength we need to know the relative total free 
energies of all of the possible species PH„(i) at that 
ionic strength. It will be convenient to calculate 
all free energies F,® relative to the free energy F0 of 
the form P, at the same ionic strength. In so doing 
we must recognize that the work of charging of 
PH„W will be different for each of the possible con­
figurations, so that Ffl will also depend on the con­
figuration. (To clarify the subsequent discussion 
it may be worthwhile to repeat here that the various 
VJ define the form PH„(i); a specific set of values of 
the & compatible with the chosen VJ defines a con­
figuration.) 

We first convert P to its hypothetical discharged 
state at the same ionic strength. By the equation 
13, the resulting free energy change is 

~ k E &2)o W" - Bkk) - W0 

the subscript zero indicating that the values of £k to 
be used are those appropriate to the form P (i.e., 
v = 0). 

We next compute the difference in free energy 
between PH/ ' ' and P, both in their hypothetical 
discharged state. This is clearly equal to E VJAFJ*. 

5 

Next we convert PH„® to its actual charged form 
with the free energy change 

k E feV'Wkk - Btk) + W^> 
2K = I 

(15) In practice we can ignore the vast majority of possible species 
P H J A " . For instance, any form having protons on carboxyl groups 
and not on amino groups or phenolic groups can be neglected because 
its stability is far too low to allow it to be present to an appreciable 
extent. 
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with the values of Jk appropriate to the particular 
configuration of PHv^, which we are considering. 
Adding these contributions we get 

i m 

j l°k-\ 
(&')o]W» - Skk) + W - W, (25) 

Next we wish to convert the AFj* into the corre­
sponding (AF°int)j by equation 21 or 22, and we ob­
serve that , in so doing, the term (e2/2b) (<4kk—Ba) 
enters in a different way for cationic and anionic sites. 
For cationic sites (all of which have (Jk)o = 0) such a 
term is to be subtracted from (AF°int)j for each site 
which has Jk = 1 in the chosen configuration of 
PH„ ( i ). For anionic sites (all of which have (Jk)o = 
— 1) such a term is to be added to (AF°int)j for each 
site which has Jk = 0 in the chosen configuration of 
PH„W . This can be achieved by adding this term 
for each anionic site in the form P, and subtracting 
it again for each site still having Jk = 1 in the chosen 
configuration of P H / ' ' . Thus 

2 m 

Y v-AF* = JXAFo1nOi -±r Y K W -
j j k - 1 

(&•)<)] G4kk- Skk) + »iu°H+ (26) 
Combining equations 25 and 26, the self-energy 
terms vanish and 

P*w -F1 = Y1 "J(AFO1nOi + W > - W0 + vvPw 

(27) 

Of the terms on the right-hand side of equation 27 
only WJ^ is configuration dependent. To compute 
the average over all configurations of F„(i) — F0, it 
is necessary only to evaluate the average contribu­
tion of Wv® to the free energy. To do this we first 
evaluate the parti t ion function 

/„a) = Y e-Wvw/kT (28) 
C 

where the summation extends over all configura­
tions. The average contribution to the free energy 
is then 

WP = - arin/,"' = - *rin Ye-w*{l)/kT (29) 

C 

If each of the fi„(i) configurations had the same en­
ergy then WP would simply reduce to — kT In 
HP + WP. Since this will not in general be 
true, some other way must be found to simplify the 
sum on the right-hand side of equation 29. 

We shall use here a procedure first employed by 
Kirkwood in dealing with cooperative phenomena in 
metal alloys.16 We define an energy WP' such 
tha t 

-kT In Y e-w'li)/kT = -kT In n„«> + W^" (30) 
C 

We1 next expand the exponentials in equation 30 so 
tha t the left-hand side becomes 

- M M n j E l - Z > ' a ) / * r + 
( C C 

(1/2!) Y ( W ) V W - • • -I 

(16) J. G. Kirkwood, J. Ckem. Phys., 6, 70 (1938). A detailed ac­
count of this method is given by T1 der Haar, "Elementary Statistical 
Mechanics," Rinehart and Co., Kexv York, N. Y., J954. 

Since 

Y i = a>(,) 

C 

we may add kT In QVW to each side, and obtain 

- •""-H' -S^w--! «•» 
where 

<w> = Y WV&111 

C 

< m > = J^ ( W ) W . etc. (32) 
C 

Expanding the logarithm occurring in equation 31 
in ascending powers of (1/kT) we finally obtain 

W-Ti1^(Sf)* (33) 

where 
M1 = <W> 
M2 = <W>* - <W*> (34) 
M1 = <W>> - 3<W2XW> + 2<W>*, etc. 

and, by combination with equations 29, 30 and 27, 
this gives for the average free energy over all states 

Fp> - F0 = Y "MF°'nt)i + ^0H+ - kT In &«> + 
j 

Ki1Tf(WrY-"* (35) 

Essentially, then, the calculation of the free en­
ergy reduces to the calculation of the Mn of equa­
tion 34, and, hence, the averages of equation 32. 
How difficult this calculation is depends on the 
number of dissociable sites of the protein molecule 
and on the number of terms retained in equation 33. 
If one retains only the first term the calculation be­
comes quite simple, and still represents an approxi­
mation considerably superior to the smeared model 
discussed in the introduction. In the calculations 
of the following paper we shall retain two terms in 
the expansion; most of the t ime the second term 
will be found to make a relatively small contribu­
tion, so tha t neglect of terms higher than the second 
is probably hardly ever of any importance. 

The Titration Curve 
I t is now possible to write down the standard free 

energy change AFV" for the reaction 
P + ^ H + — ^ PH/1 ' (III) 

for 

AFV" = TP' -F0- ^ V 

i.e. 

AF>yW= Y "J(AF0InOj - kTln !}„<» + 

"i^tirY-™ (36) 

We now introduce kP, the association constant for 
reaction I I I , i.e. 

W> = (PH„0)/(P)a'Ht (37) 

where brackets represent relative concentrations as 
the total protein concentration approaches zero. 
This constant is clearly related to AFV'5 

&p>pai = - kTln W> (38) 
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The titration curve itself is a plot of the average 
number of bound protons, v versus pR, or, more of­
ten, the average number of dissociated protons, m — 
i>, versus pH. It is obtained at once from equation 
37 

m m 

SS'(PH,<») EfL*-"'W 
, . 0 ( i ) = " - ' V ( O — L ( 3 9 ) 

• - o (0 v = i \ (D / 

where E represents summation over all the species 

giving the same value of v. As previously noted, 
only a few k,W normally make an appreciable con­
tribution to E £«(0-

(i) 
In many experiments (e.g., spectrophotometry 

titration of the phenolic groups) one obtains ij for a 
particular kind of group rather than v. This is ob­
tained as 

m 

-Vi = ^AM 1 (40) 
i+ E (E^W 

It should be noted that whereas v in equation 39 is 
the same for each form PH/ ' ' , v, will in general be 
different for each species PH„(i). 

Discussion 
The general approach of this paper has been used 

recently in a number of investigations by Hill.17-19 

In two of these17,19 are tabulated values of the ef­
fective dielectric constant DR for the interaction be­
tween a pair of charges. These are simply related10 

to the functions Aw, B^\ and Cki of the present pa­
per. 

Two of Hill's papers discuss, among other mat­
ters, the protein titration curves. In one of these18 

it was shown that closely spaced pairs of sites would 
be expected to lead to large deviations from the sim­
ple model discussed in the introduction. In the 
other19 Hill calculated titration curves for a model 
which assumed random distribution of the various 
kinds of dissociable sites over fixed positions. In 
the model used in this paper each fixed position has 
been assigned to a particular kind of dissociable 
site. Hill's calculation takes into account the 
interaction of each site with nearest neighbors only, 
which, for proteins, is probably a poor approxima­
tion. Both of Hill's studies, in so far as they apply 
to impenetrable spherical proteins, could be ob-

(17) T. L. Hill, J. Phys. Chem., 60, 253 (1956). 
(18) T. L. Hill, T H I S JOURNAL, 78, 3330 (1956). 
(19) T. L. HiH, ibid., 78, 5527 (1956). 

tained as special results of the treatment of this 
paper. 

Linderstr0m-Lang20 recently has calculated the 
effect of ionic strength on the chemical potential 
of spherical multipolar ions, using the same pro­
cedure we have used. This means, in the termin­
ology of this paper, that he has calculated the sum 

( s 7 2 a ) E E ^ i c * i 
k i 

His most interesting application is to ions with a net 
charge of zero. Here the contributions of the first 
term in Cki (equation 8), i.e., x/(l +x) D, cancel, 
and the remainder of equation 8 becomes important. 
In contrast, we shall generally be interested in ions 
for which the net charge is not zero, and here x/(l + 
x)D is at low ionic strength the predominant term in 
Cki. 

Harris and Rice21 have applied to flexible poly-
electrolytes essentially the same ideas as are here 
applied to proteins. Their treatment is simpler 
than that given here in that they have assumed 
values for the effective dielectric constant for pair-
wise interaction. I t is also more complicated in that 
the charges of flexible polyelectrolytes are not at 
fixed distances with respect to one another. 

It would be desirable to extend the treatment of 
this paper to ellipsoidal ions. To do this one needs 
to know W for such ions. In the absence of added 
electrolyte the expression for W given by Hill22 is ap­
plicable. There is, however, no general relation ap­
plicable to finite ionic strength. Linderstr0m-
Lang20 has worked out in great detail, with numeri­
cal tabulations, the ionic strength dependent por­
tion of W for ellipsoidal ions with charges located 
along the major axis of the ellipsoid, but this result 
is inapplicable to globular protein ions. 

It should be noted, finally, that the results of the 
present paper can be extended without additional 
difficulty to the reaction of proteins with any kind 
of small ion. In this connection we should men­
tion the calculations made several years ago by 
Schellman,23 which showed that the intrinsic asso­
ciation constants for small ion binding should de­
pend on the depth of the binding sites below the 
molecular surface. His arguments follow in princi­
ple the same lines used in this paper in discussing 
AF°int for hydrogen ion dissociation. 
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